

Nanocurcumin Encapsulation Enhances Alzheimer's Gene Expression in Neuroblastoma Cells Treated with Chemical Inducers

Tukur Zayyanu ¹, Karnawat Monika ², Fatima Aliyu ³, Fatima Aliyu ⁴

¹Department of Biotchnology, Career Point University, Alaniya, Kota, Rajasthan, India

²Department of Medical Science, Aisha Tudu Tahfiz Collage of Medical Science and Technology Zamfara State Nigeria

³Department of Zoology, Kirorimal Collage University of Delhi India

✉ Corresponding author:

Email:tzayyanu@gmail.com; Phone: +2348063069098

Abstract

Introduction: Encapsulating of curcumin in calcium phosphate nanoparticles will boost its antioxidant potential while simultaneously lowering oxidative stress. Molecules having at least one oxygen atom and one or more unpaired electrons that are capable of independent living are known as reactive oxygen species. Free oxygen radicals such as singlet oxygen, hydroperoxyl radical, hydroxyl radical, superoxide anion radical, and free nitrogen radicals fall under this group. Aerobic respiration and the inflammatory response, which largely take place in hepatocytes and macrophages, produce trace amounts of reactive oxygen species (ROS). In a situation where antioxidants fail to counteract these charged species, patients with neurological disorders such as Parkinson's and Alzheimer's disease may develop. Free radicals and charged species have been demonstrated to be more prevalent in patients with neurological disorders. This is linked to neuronal cell oxidative damage. Thus, in helping with neuroprotection and lessen oxidative stress under these circumstances, antioxidants are frequently employed.

Methodology: Five grams of turmeric were weighed and extracted using a Soxhlet apparatus. The extract was evaporated, and the sample was weighed for further calculation. Additionally, four different varieties of turmeric were sampled, weighing 10 gm of turmeric and extracting the extract in 500 millilitres of ethanol. 8 cycles for every sample. The Antioxidant Assay of Extracts (ABTS Assay) is also employed. Moreover, column chromatography was used to purify the extracts. that the fractions chosen for HPLC examination have the highest amount of curcumin. with s modifications aamorphous calcium phosphate nanoparticles using the co precipitation approach from (Xia et al. 2018). and the use of synthesized calcium phosphate nanoparticles to encapsulate curcumin. to treat SHSY-5Y cell line induce with glyceraldehyde and rotenone chemical inducers, **Conclusions:** These findings provide insights into potential avenues for developing treatments that target the genetic aspects of AD and Parkinson's disease. However, further mechanistic exploration is necessary to fully comprehend the underlying

molecular mechanisms and translate these findings into effective clinical strategies for these intricate neurological disorders.

Key words: Neuroblastoma, Chemical Inducers and Encapsulated Nano Cur Cumin

Introduction

Curcuma longa belongs to the Zingiberaceae family of herbaceous perennial plants, which also includes ginger. It has subterranean stems or tuberous rhizomes. *Curcuma longa L*, a plant of the Zingiberaceae family, is a popular spice across Asia, including India. The primary constituents are polyphenols, which have a bright yellow colour. Turmeric's pharmacological or biological properties can thus be advantageous for pharmaceutical drug research and innovative treatment development. Both in ancient and modern times, plant-based medicines have played a significant role in the healthcare systems of many societies. According to Verma et al. (2021) the composition of turmeric powder is around 60–70% carbs, 6–13% water, 6–8% protein, 5–10% fat, 3–7% dietary minerals, 3–7% essential oils, 2–7% dietary fibre, and 1–6% curcuminoids. Its most commonly used medicinal component, the root, contains a range of minerals and phytochemicals. Turmeric contains a variety of phytochemicals, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which belong to the family of curcuminoids known as diarylheptanoids. 34 essential oils are found in turmeric, the most important being zingiberene, atlantone, germacrone, and turmerone (Ahmad et al., 2020); (Verma et al., 2021). Supplements containing *curcuma longa L* exhibit several biological and pharmacological characteristics, such as antiviral, antibacterial, antiallergic, anticancer, and cardioprotective effects. Researchers are presently employing bio-nanotechnology as a contemporary option to undertake a variety of studies aimed at producing the required treatments for neurological illnesses. Numerous studies have employed nanoparticles as drug carriers for both in vitro study (Tukur and Karnawat 2021).

An excess of reactive species, such as oxygen and hydroxyl free radicals, can result in oxidative stress, which can also be produced by a deficiency in the antioxidant system. According to Priyanka et al. (2017), Sharifi-etal. 2020, Sies. 2020, Tanvir et al. 2017), and Xia et al. (2018), oxidative stress results from an imbalance between prooxidants (free radicals) and antioxidants. Both oxidants and free radicals can lead to oxidative stress. They therefore initiate the body's oxidation process. Because of the many effects it has, it contributes to the emergence of diseases. Moreover, DNA, lipids, and proteins are all harmed. The production of vital biological components and the oxidative phosphorylation process that supplies ATP to cells are two of the mitochondria's important roles. Reactive oxygen species (ROS) concentrations must be low for normal cellular signalling. The genesis of chronic illnesses as cancer, diabetes, neurological disorders, and cardiovascular diseases is significantly influenced by oxidative stress (OS) (Sharifi-etal., 2020); (Sies, 2020); (Tanvir, et al., 2017); (Xia et al., 2018).

According to Bhalani et al. (2022), curcumin, a hydrophobic polyphenol obtained from the dried rhizomes of *Curcuma longa L.*, has great promise in the treatment of neurological conditions and brain tumours (Brain, &Delivery., 2021). The main barrier preventing curcumin from entering the brain is the blood-brain barrier (BBB). Because of this, curcumin has a number of drawbacks that make it difficult to utilise as a drug, such as a very low oral bioavailability. Curcumin's bioavailability will be improved through the recently developed drug encapsulation of Amorphous Calcium Phosphate (ACP) Nanoparticles. Because of its advantageous properties, including biocompatibility, biodegradability, and a significant affinity for binding to nucleic acids, (ACP) are hence efficient drug delivery materials. Askarizadeh, 2020; Brain & Delivery, 2021; Abrami, 2018. Using SH-SY-5Y neuroblastoma cells induced with Alzheimer's disease inducers such as glyceraldehyde and retenone,

among others, the research aims to present a current nanobiotechnological approach of curcumin encapsulation with (ACP) nanoparticles antioxidant potency that will be used for in vitro study in treatment of Alzheimer's age-related neurodegenerative diseases.

Materials and Methods

5 gm of turmeric were weighed, Soxhlet extracted, and the extract's evaporation process and sample weighing were all done for calculation. Additionally, four different varieties of turmeric were sampled, weighing 10 gm of turmeric and extracting the extract in 500 millilitres of ethanol. 8 cycles for every sample. The Antioxidant Assay of Extracts (ABTS Assay) is also employed. Moreover, column chromatography was used to purify the extracts. that the fractions chosen for HPLC examination have the highest amount of curcumin. with s modifications aamorphous calcium phosphate nanoparticles using the co precipitation approach from (Xia et al. 2018). and the use of synthesized calcium phosphate nanoparticles to encapsulate curcumin. to treat SHSY-5Y cell line induce with glyceraldehyde and rotenone chemical inducers,

Gene expression analysis

RNA isolation:

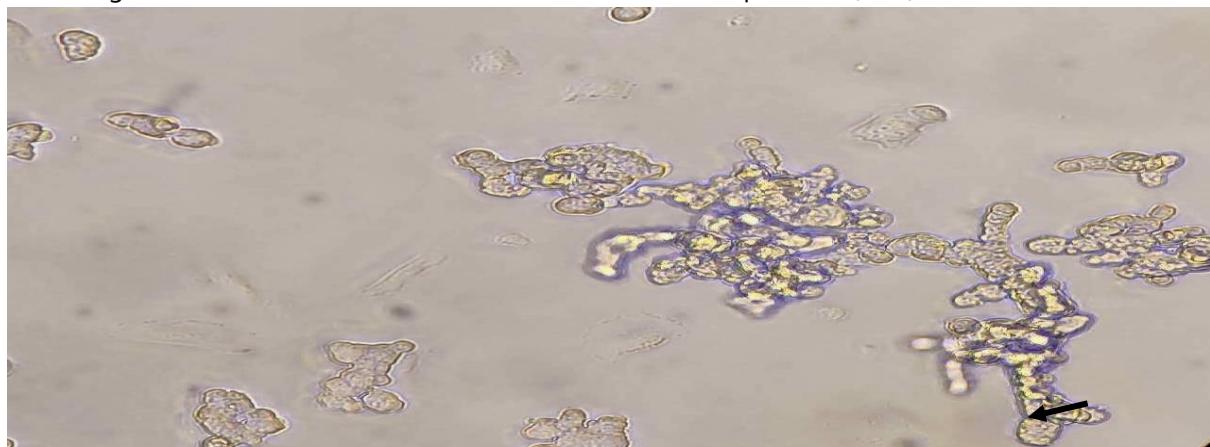
Total RNA was isolated and separated from DNA and protein after extraction with a solution called as Trizol (Sigma) according to manufacturer instruction. Briefly 200 μ L of cell culture sample were taken. 500 μ L of Tizol solution was added vortexed vigorously for 30 second Kept on ice for 20 minutes. Centrifuged in refrigerated centrifuge at 10,000 RPM, at 4 $^{\circ}$ C for 10 minutes. Collected the supernatant in fresh tube. Added 500 μ L of chilled chloroform and 100 μ L of Isoamyl alcohol. Vortexed thoroughly and kept in ice for 15 minutes. Centrifuged in refrigerated centrifuge at 10,000 RPM, at 4 $^{\circ}$ C for 15 minutes. Collected aqueous phase in new eppendorf. Added equal volume of chilled Isopropyl alcohol and vortexed properly. Incubated at -20 $^{\circ}$ C for 30 - 35 minutes followed by centrifugation in refrigerated centrifuge at 10,000 RPM, at 4 $^{\circ}$ C for 10 minutes. Supernatant discarded and pellet collected. Air dried the pellet. Added 50 μ L of Nuclease free water and stored at -20 $^{\circ}$ C for 10 minutes. Qualitative and quantitative analysis of RNA was performed.

cDNA Synthesis:

mRNA (4ug) from tissue were used for first strand cDNA synthesis by reverse transcription using RevertAidTM First Strand cDNA Synthesis Kit (Fermentas) in a thermocycler (MWG Biotech). The RNA samples were incubated with 1 μ l of oligo (dT) primers (100 μ M, 0.2 μ g/ μ l) and 12 μ l of nuclease-free water at 65degreeC for 5 min. The reaction was cooled on ice to allow the primers to anneal to the RNA, then spin down and placed on ice again after which the following components were added to the reaction in order; 4ul of 5X Reaction Buffer, 1 μ l of RibolockTM RNase inhibitor (20 U/ml), 2 ml of 10 mM dNTPs and 1.0 μ L of RevertAidTM M-MuLV-Reverse Transcriptase (200 U/ μ l). The reagents were gently mixed and incubated for 1 hr at 42degreeC and then at 70degreeC for 5 min terminated the reaction and the synthesized cDNA was stored at -20 0 C for further use.

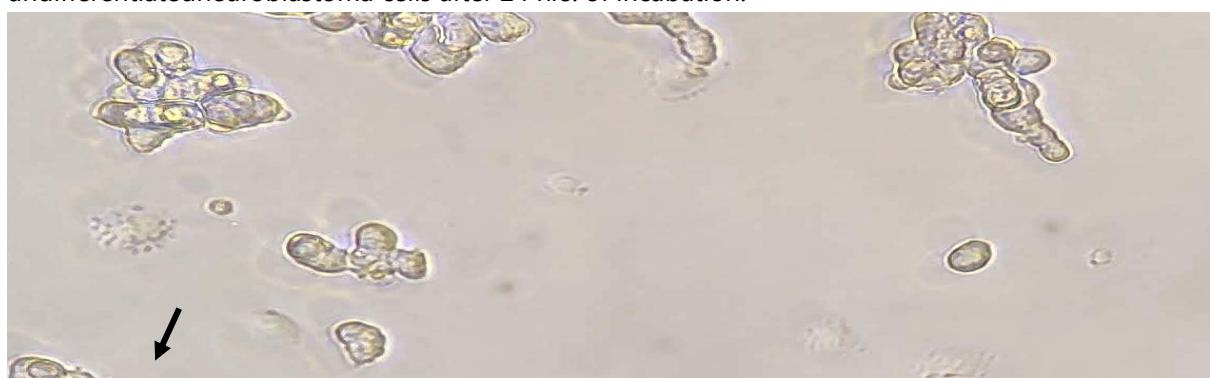
Gene expression analysis of Tau and α β 42 protein for Alzheimer's.

Briefly 5 ul cDNA, 15 μ l of ddH2O incubated for 60 minutes at 45 Degree, followed by incubation at 95 $^{\circ}$ for 5 min. Diluted with 30ml Nuclease free water. PCR reaction was set by adding 25 μ l sybr green, 2 μ l Primer F, 2 μ l of Primer R, 5 μ l of prepared cDNA and 16.0 μ l of nuclease free water. 7 minutes at 95 $^{\circ}$ C, then 40 cycles of 10 seconds at 95 $^{\circ}$ C, 20 seconds at 60 $^{\circ}$ C, and 20 seconds at 72 $^{\circ}$ C were used for amplification. All of the tests were done in triplicate. The comparative cycle threshold approach was employed to assess the relative expression of target genes, with b-actin serving as a normalizer.

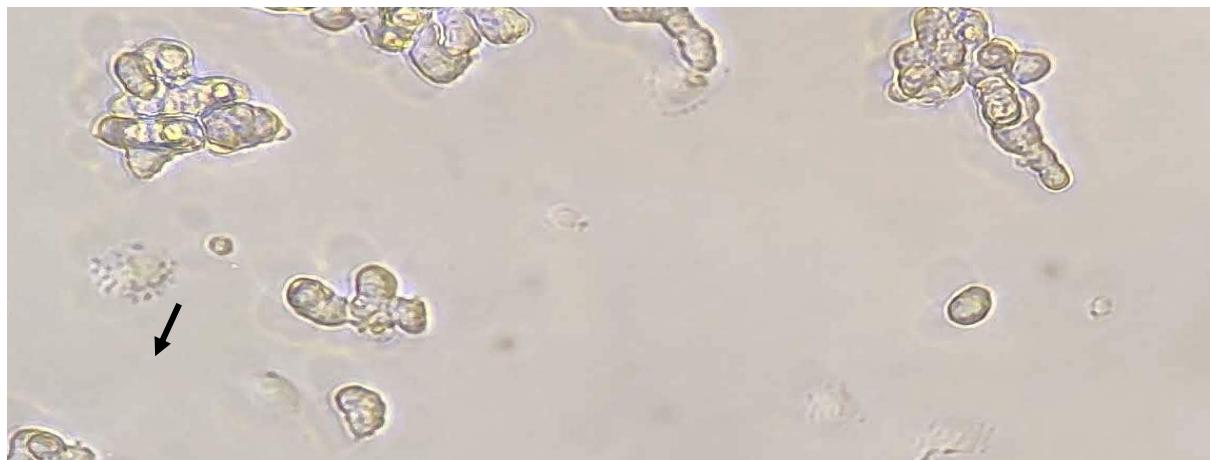

Results

expression of target genes, with b-actin serving as a normalizer.

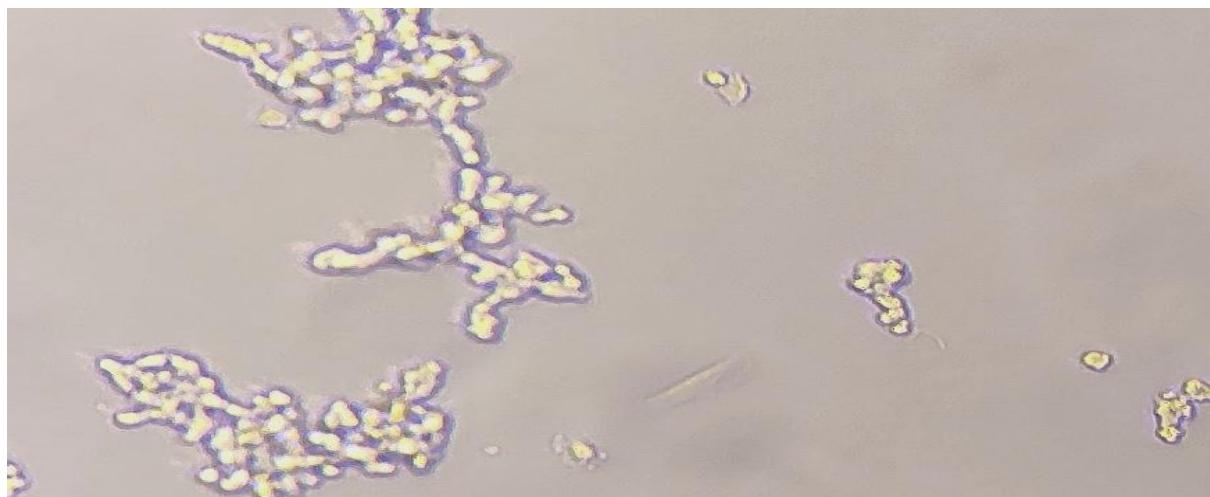
Samples	IC50 concentration(µg/ml)
Curcumin:	127.8305332
Calcium phosphate:	98.46698113
Encapsulated NP:	195.210122
Inducer for Alzheimer's disease	
Inducer1 (okadaic acid):	119.5099399
Inducer2 (AlCl3):	108.3870968
Inducer3 (Glyceraldehyde):	92.56163811
Inducers for Parkinson's disease	
Inducer 4 (Rotenone):	75.12713823


Table.1 Summarizing and exhibiting the IC50 Concentrations Graphs and Inducing Process

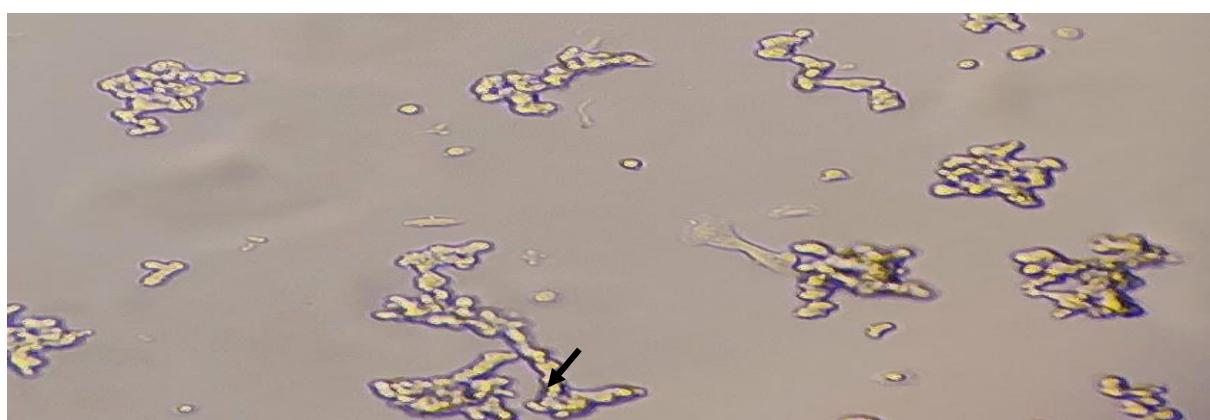
Cell Images under the Effect of Inducers and Inducer and Encapsulated (ACP) NaNOCurcumin


Figure. 1. SH-S5Y5 cell lines. Cells were in suspension and adhered also.

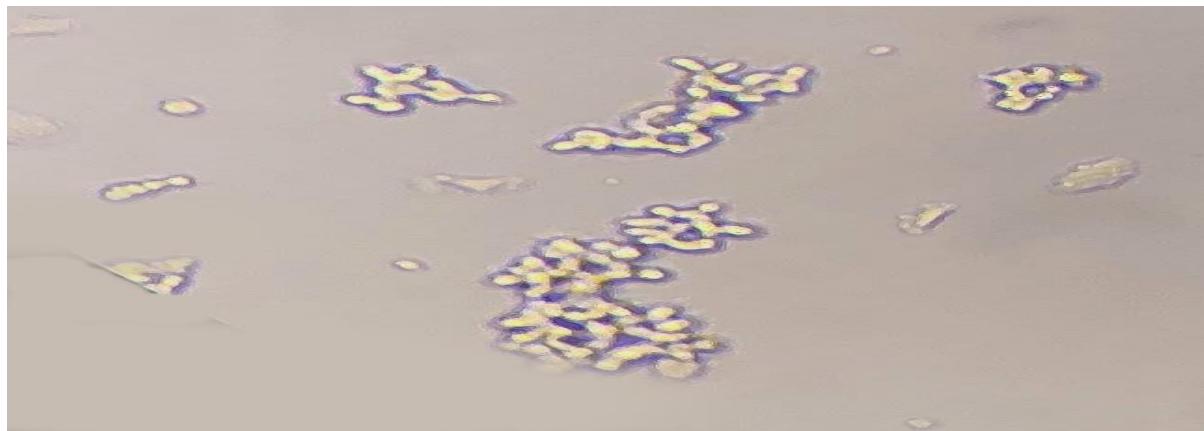
undifferentiatedneuroblastoma cells after 24 hrs. of incubation.


Figure. 2 Cell after induced with IC50 concentration of Glyceraldehyde.

Cell blebbing, indication of early apoptotic cells. Cells circularized and no initiation of differentiation of cells.

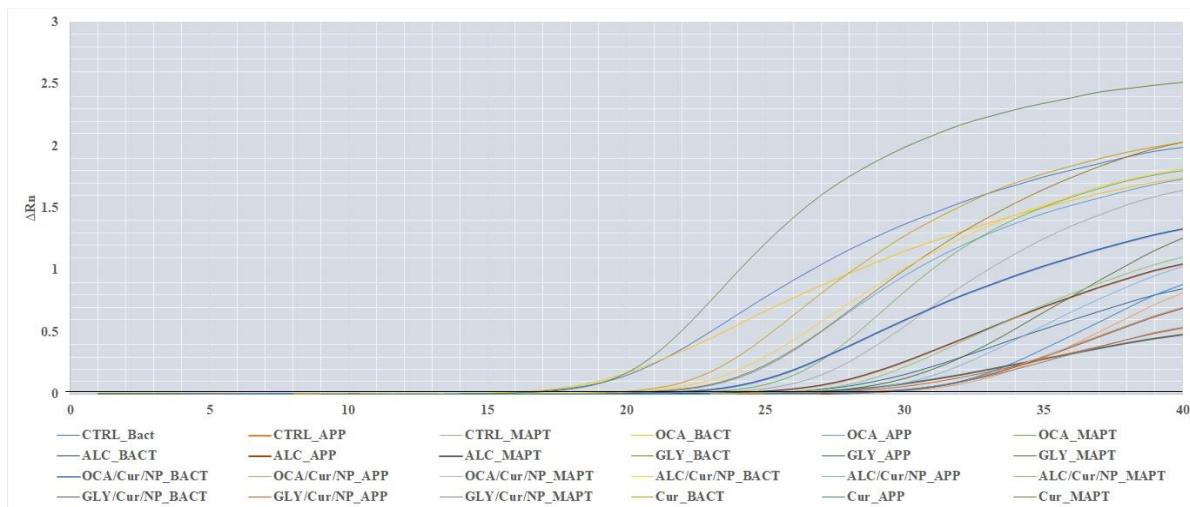

Figure. 3 Cell after induced with IC50 concentration of Glyceraldehyde.

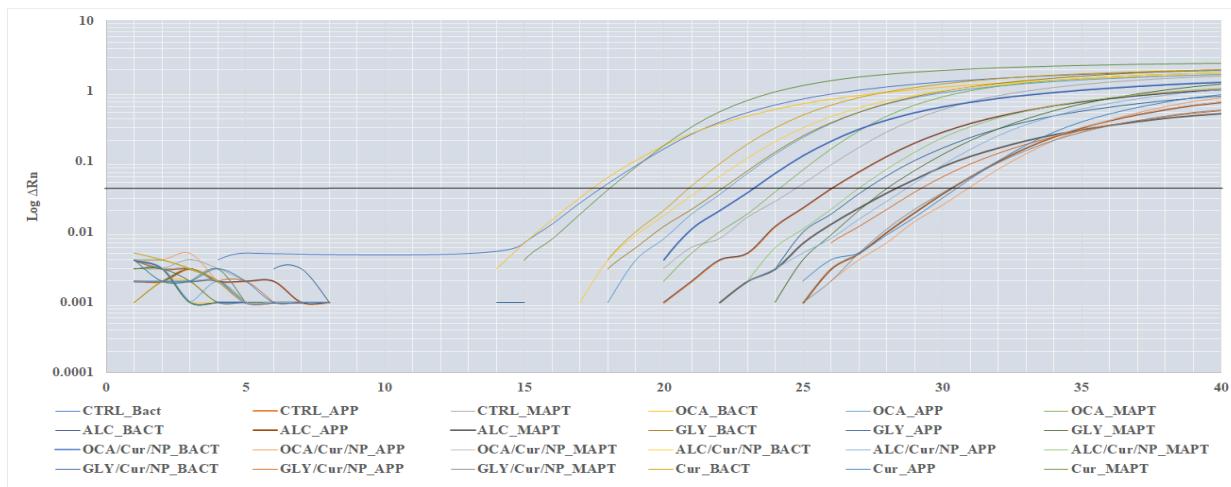
Cell blebbing, indication of early apoptotic cells. Cells circularized and no initiation of differentiation of cells.


Figure. 4 Cell after treatment with IC50 concentrations of glyceraldehyde and Enapsulated (ACP) NanoCurcumin.

More differentiated cells after treatment of Enapsulated (ACP) Nano curcumin. Some early apoptotic cells observed.

Figure. 5 Cell after induced with IC50 concentration of rotenone.


Cell blebbing indicating late apoptotic cells, more circularized cells indicating more cells in suspension and lost properties of adhering.


Figure. 6 Cell after treatment with IC50 concentrations of rotenone and Enapsulated (ACP) Nano Curcumin.

Increased circularization of cells implies a greater presence of cells in a suspended state, resulting in a loss of their adhesive characteristics. The impact of Enapsulated (ACP) Nano Curcumin. curcumin on rotenone induced morphological changes in cells were found to be relatively insignificant.

Gene Expression Analysis of APP, MAPT and MAP2 Genes of Alzheimer's Amplification plot

Figure7: Amplification plot of genes. Fluorescence (ΔRn) on Y axis and Number of cycles on x axis.

Figure8: Amplification plot of genes. Log of Florescence (Log ΔR_n) on Y axis and Number of cycles on x axis.

Fold change calculation:

Sample	Ct	delta ct	delta Ct	negative delta deltact	fold change
CTRL_Bact	18.350				
CTRL_APP	26.610	8.261			
CTRL_MAPT	25.344	6.995			
OCA_BACT	18.069				
OCA_APP	22.854	4.785	-3.476	3.476	11.126
OCA_MAPT	24.704	6.635	-0.360	0.360	1.2833
ALC_BACT	26.610				
ALC_APP	30.919	4.308	-3.953	3.953	15.483
ALC_MAPT	28.860	2.250	-4.745	4.745	26.814
GLY_BACT	22.633				
GLY_APP	27.916	5.283	-2.978	2.978	7.8768
GLY_MAPT	28.649	6.016	-0.979	0.979	1.9708
OCA/Cur/NP_BACT	23.755				
OCA/Cur/NP_APP	31.445	7.690	-0.571	0.571	1.4858
OCA/Cur/NP_MAPT	30.919	7.163	0.169	-0.169	0.8897
ALC/Cur/NP_BACT	21.955				
ALC/Cur/NP_APP	29.322	7.366	-0.895	0.895	1.8590
ALC/Cur/NP_MAPT	27.617	5.661	-1.333	1.333	2.5199
GLY/Cur/NP_BACT	23.755				
GLY/Cur/NP_APP	29.777	6.021	-2.240	2.240	4.7228
GLY/Cur/NP_MAPT	30.868	7.112	0.118	-0.118	0.9217
Cur_BACT	21.580				
Cur_APP	31.013	9.433	1.172	-1.172	0.4436
Cur_MAPT	18.601	-2.979	-9.973	9.973	0.0009

Table2 Gene Expression Analysis of APP, MAPT And MAP2 Genes of Alzheimer's. Disease.

Sample	Fold change ($2^{-\Delta\Delta Ct}$)
CTRL	1
Oca/APP	11.13
Oca/MAPT	1.28
AIC13/APP	15.48
AIC13/MAPT	26.81
Gly/APP	7.87
Gly/MAPT	1.97
Oca/Cur/APP	1.48
Oca/Cur/MAPT	0.88
AIC13/Cur/APP	1.85
AIC13/Cur/MAPT	2.51
Gly/Cur/APP	4.72
Gly/Cur/MAPT	0.92
Cur/APP	0.44
Cur/MAPT	0.0009

Table3. Gene Expression Analysis of APP, MAPT And MAP2 Genes of Alzheimer's. Disease.

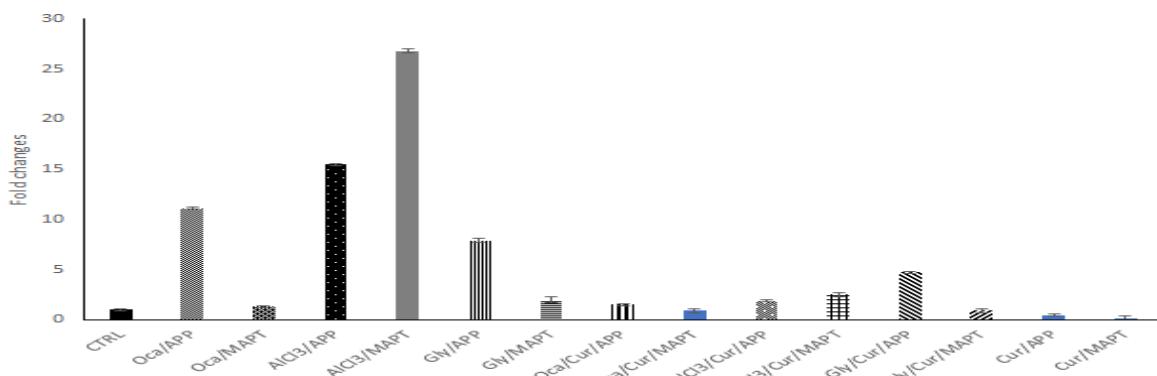


Figure10: Fold change or $2^{-\Delta\Delta Ct}$ of APP and MAPT genes in SH-SY5Y cells incubated with inducers and inducer/Curcumin. The qRT-PCR slope should be between -3.6 and -3.2; if the slope is -3.32, the PCR efficiency is said to be 100%. The PCR efficiency should be between 90 and 110 percent, but 100 percent is ideal. In the present study the efficiency of the target and selected controls were compared to see if they were nearly equal, which is a requirement for using the Ct method for quantification. The present study shows the over expression of APP and MAPT for all inducers treated SH-SY5Y cells while their expression is greatly reduced after the treatment of 128 μ g/ml (IC50) concentration of curcumin. Only curcumin treated cells showed under-expressed APP and MAPT.

Conclusions: These findings provide insights into potential avenues for developing treatments that target the genetic aspects of AD and Parkinson's disease. However, further mechanistic exploration is

necessary to fully comprehend the underlying molecular mechanisms and translate these findings into effective clinical strategies for these intricate neurological disorders.

References

1. Abdul-Latif, R., Stupans, I., Allahham, A., Adhikari, B., & Thrimawithana, T. (2021). Natural antioxidants in the management of Parkinson's disease: Review of evidence from cell line and animal models. *Journal of integrative medicine*, 19(4), 300–310. <https://doi.org/10.1016/j.joim.2021.03.007>
2. Abirami, M., Raja, M. J., Mekala, P., & Visha, P. (2018). Preparation and Characterisation of Nanocurcumin Suspension, 7(1), 100–103. Retrieved from www.ijset.net
3. Adami, R., & Bottai, D. (2022). Curcumin and neurological diseases. *Nutritional neuroscience*, 25(3), 441–461. <https://doi.org/10.1080/1028415X.2020.1760531>
4. Ahmad, R. S., Hussain, M. B., Sultan, M. T., Arshad, M. S., Waheed, M., Shariati, M. A., ... Hashempur, M. H. (2020). Applications of Turmeric: A Mechanistic Review. *Evidence-Based Complementary and Alternative Medicine*, 2020(7656919), 1–14.
5. Amato, A., Terzo, S., & Mulè, F. (2019, December 1). Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer's disease. *Antioxidants*. MDPI. <https://doi.org/10.3390/antiox8120608>
6. Andrade-Guerrero, J., Santiago-Balmaseda, A., Jeronimo-Aguilar, P., Vargas-Rodríguez, I., Cadena-Suárez, A. R., Sánchez-Garibay, C., ... Soto-Rojas, L. O. (2023, February 1). Alzheimer's Disease: An Updated Overview of Its Genetics. *International Journal of Molecular Sciences*. MDPI. <https://doi.org/10.3390/ijms24043754>
7. Armstrong, R. (2020). What causes neurodegenerative disease?. *Folia neuropathologica*, 58(2), 93–112. <https://doi.org/10.5114/fn.2020.96707>
8. Armstrong, R. A. (2019). Risk factors for Alzheimer's disease. *Folia Neuropathologica*. Termedia Publishing House Ltd. <https://doi.org/10.5114/fn.2019.85929>
9. Ashok, A., Andrabi, S. S., Mansoor, S., Kuang, Y., Kwon, B. K., & Labhsetwar, V. (2022, February 1). Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. *Antioxidants*. MDPI. <https://doi.org/10.3390/antiox11020408>
10. Askarizadeh, A., Barreto, G. E., Henney, N. C., Majeed, M., & Sahebkar, A. (2020, July 30). Neuroprotection by curcumin: A review on brain delivery strategies. *International Journal of Pharmaceutics*. Elsevier B.V. <https://doi.org/10.1016/j.ijpharm.2020.119476>
11. Askarizadeh, A., Barreto, G. E., Henney, N. C., Majeed, M., & Sahebkar, A. (2020, July 30). Neuroprotection by curcumin: A review on brain delivery strategies. *International Journal of Pharmaceutics*. Elsevier B.V. <https://doi.org/10.1016/j.ijpharm.2020.119476>
12. Bangladesh. *Journal of Food Quality*, 2017. <https://doi.org/10.1155/2017/8471785>

13. Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022, September 1). Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. *Biomedicines*. MDPI. <https://doi.org/10.3390/biomedicines10092055>
14. Brain, I., & Delivery, T. (2021). Its Brain Targeted Delivery.
15. Brain, I., & Delivery, T. (2021). Its Brain Targeted Delivery.
16. Breijeh, Z., & Karaman, R. (2020, December 1). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules*. MDPI. <https://doi.org/10.3390/MOLECULES25245789>
17. Cenini, G., Lloret, A., & Casella, R. (2019). Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. *Oxidative medicine and cellular longevity*, 2019, 2105607. <https://doi.org/10.1155/2019/2105607>
18. Cetin, S., Knez, D., Gobec, S., Kos, J., & Pišlar, A. (2022). Cell models for Alzheimer's and Parkinson's disease: At the interface of biology and drug discovery. *Biomedicine & pharmacotherapy* = *Biomedecine&pharmacotherapie*, 149, 112924. <https://doi.org/10.1016/j.biopha.2022.112924>
19. Cetin, S., Knez, D., Gobec, S., Kos, J., & Pišlar, A. (2022). Cell models for Alzheimer's and Parkinson's disease: At the interface of biology and drug discovery. *Biomedicine & pharmacotherapy* = *Biomedecine&pharmacotherapie*, 149, 112924. <https://doi.org/10.1016/j.biopha.2022.112924>
20. Chia, S. J., Tan, E. K., & Chao, Y. X. (2020). Historical Perspective: Models of Parkinson's Disease. *International journal of molecular sciences*, 21(7), 2464. <https://doi.org/10.3390/ijms21072464>
21. Chia, S. J., Tan, E. K., & Chao, Y. X. (2020). Historical Perspective: Models of Parkinson's Disease. *International journal of molecular sciences*, 21(7), 2464. <https://doi.org/10.3390/ijms21072464>
22. Ciurea, V. A., Covache-Busuioc, R. A., Mohan, A. G., Costin, H. P., & Voicu, V. (2023). Alzheimer's disease: 120 years of research and progress. *Journal of medicine and life*, 16(2), 173–177. <https://doi.org/10.25122/jml-2022-0111>
23. Del Prado-Audelo, M. L., Caballero-Florán, I. H., Meza-Toledo, J. A., Mendoza-Muñoz, N., González-Torres, M., Florán, B., ... Leyva-Gómez, G. (2019). Formulations of curcumin nanoparticles for brain diseases. *Biomolecules*. MDPI AG. <https://doi.org/10.3390/biom9020056>
24. Delamarre, A., & Meissner, W. G. (2017). Epidemiology, environmental risk factors and genetics of Parkinson's disease. *Pressemedicale (Paris, France : 1983)*, 46(2 Pt 1), 175–181. <https://doi.org/10.1016/j.lpm.2017.01.001>
25. Delamarre, A., & Meissner, W. G. (2017). Epidemiology, environmental risk factors and genetics of Parkinson's disease. *Pressemedicale (Paris, France : 1983)*, 46(2 Pt 1), 175–181. <https://doi.org/10.1016/j.lpm.2017.01.001>

26. Dickson D. W. (2018). Neuropathology of Parkinson disease. *Parkinsonism & related disorders*, 46 Suppl 1(Suppl 1), S30–S33. <https://doi.org/10.1016/j.parkreldis.2017.07.033>

27. Fields, M., Marcuzzi, A., Gonelli, A., Celeghini, C., Maximova, N., & Rimondi, E. (2023). Mitochondria-Targeted Antioxidants, an Innovative Class of Antioxidant Compounds for Neurodegenerative Diseases: Perspectives and Limitations. *International journal of molecular sciences*, 24(4), 3739. <https://doi.org/10.3390/ijms24043739>

28. Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species - sources, functions, oxidative damage. *Polskimerkuriuszlekarzki : organ Polskiego Towarzystwa Lekarskiego*, 48(284), 124–127.

29. Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. *Antioxidants (Basel, Switzerland)*, 9(11), 1092. <https://doi.org/10.3390/antiox9111092>

30. Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. *Journal of neurology, neurosurgery, and psychiatry*, 91(8), 795–808. <https://doi.org/10.1136/jnnp-2019-322338>

31. Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. *Journal of neurology, neurosurgery, and psychiatry*, 91(8), 795–808. <https://doi.org/10.1136/jnnp-2019-322338>

32. Joe, E., & Ringman, J. M. (2019). Cognitive symptoms of Alzheimer's disease: clinical management and prevention. *BMJ (Clinical research ed.)*, 367, I6217. <https://doi.org/10.1136/bmj.l6217>

33. Klrn, T. R., Otlu, O., & Karabulut, A. B. (2023, February 1). Oxidative stress and antioxidants in health and disease. *Journal of Laboratory Medicine*. Walter de Gruyter GmbH. <https://doi.org/10.1515/labmed-2022-0108>

34. Kouli, A., Torsney, K. M., & Kuan, W. L. (2018). Parkinson's Disease: Etiology, Neuropathology, and Pathogenesis. In T. B. Stoker (Eds.) et. al., *Parkinson's Disease: Pathogenesis and Clinical Aspects*. Codon Publications.

35. N.A. D'Angelo, M.A. Noronha, I.S. Kurnik, M. C. C. Câmara, J. Vieira, L. Abrunhosa, J.T. Martins, T. F. R. Alves, L.L. Tundisi, J.A. Ataide, J. S. R. Costa, A.F. Jozala, L.O. Nascimento, P.G. Mazzola, M.V. Chaud, A.A. Vicente, A.M. Lopes, Curcumin encapsulation in nanostructures for cancer therapy: a 10-year overview, *International Journal of Pharmaceutics* (2021), doi: <https://doi.org/10.1016/j.ijpharm.2021.120534>

36. Nair, K. P. (2020). (*Turmeric (Curcuma longa L.)* and *Ginger (Zingiber officinale Rosc.)* -World's Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger. *Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.) -World's Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger* (pp. 1–568). Springer International Publishing. <https://doi.org/10.1007/978-3-030-29189-1>

37. Priyanka, R., Vasundhara, M., Rao, G. G. E., Thara, B. S., Radhika, B., & Marappa, N. (2017). Antioxidant activity of turmeric (*Curcuma longa* L.) cultivars. *Medicinal Plants*, 9(3), 189–194. <https://doi.org/10.5958/0975-6892.2017.00029.6>

38. Radhakrishnan, D. M., & Goyal, V. (2018). Parkinson's disease: A review. *Neurology India*, 66(Supplement), S26–S35. <https://doi.org/10.4103/0028-3886.226451>

39. Raffaella Adami & Daniele Bottai (2022) Curcumin and neurological diseases, *Nutritional Neuroscience*, 25:3, 441-461, DOI: [10.1080/1028415X.2020.1760531](https://doi.org/10.1080/1028415X.2020.1760531)

40. Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V., & Varrassi, G. (2020, January 1). Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. *Advances in Therapy*. Adis. <https://doi.org/10.1007/s12325-019-01148-5>

41. S, T., & Pattan, Dr. N. (2022). Composition and Health Benefits of Turmeric (*Curcuma longa*). *International Journal for Research in Applied Science and Engineering Technology*, 10(2), 658–670. <https://doi.org/10.22214/ijraset.2022.40270>

42. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. *Lancet (London, England)*, 397(10284), 1577–1590. [https://doi.org/10.1016/S0140-6736\(20\)32205-4](https://doi.org/10.1016/S0140-6736(20)32205-4)

43. Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... Sharifi-Rad, J. (2020, July 2). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. *Frontiers in Physiology*. Frontiers Media S.A. <https://doi.org/10.3389/fphys.2020.00694>

44. Sheppard O, Coleman M. Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis. In: Huang X, editor. Alzheimer's Disease: Drug Discovery [Internet]. Brisbane (AU): Exon Publications; 2020 Dec 18. Chapter 1. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK566126/> doi:10.36255/exonpublications.alzheimersdisease.2020.ch1

45. Sies, H. (2020). Oxidative stress: Concept and some practical aspects. *Antioxidants*, 9(9), 1–6. <https://doi.org/10.3390/antiox9090852>

46. Silvestro, S., Sindona, C., Bramanti, P., & Mazzon, E. (2021). A State of the Art of Antioxidant Properties of Curcuminoids in Neurodegenerative Diseases. *International journal of molecular sciences*, 22(6), 3168. <https://doi.org/10.3390/ijms22063168>

47. Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. *Clinics in geriatric medicine*, 36(1), 1–12. <https://doi.org/10.1016/j.cger.2019.08.002>

48. Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. *Clinics in geriatric medicine*, 36(1), 1–12. <https://doi.org/10.1016/j.cger.2019.08.002>

49. Small, G. W., Siddarth, P., Li, Z., Miller, K. J., Ercoli, L., Emerson, N. D., Martinez, J., Wong, K. P., Liu, J., Merrill, D. A., Chen, S. T., Henning, S. M., Satyamurthy, N., Huang, S. C., Heber, D., & Barrio, J. R. (2018). Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: A Double-Blind, Placebo-Controlled 18-Month Trial. *The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry*, 26(3), 266–277. <https://doi.org/10.1016/j.jagp.2017.10.010>

50. Strang, K. H., Golde, T. E., & Giasson, B. I. (2019). MAPT mutations, tauopathy, and mechanisms of neurodegeneration. *Laboratory investigation; a journal of technical methods and pathology*, 99(7), 912–928. <https://doi.org/10.1038/s41374-019-0197-x>

51. TahamiMonfared, A. A., Byrnes, M. J., White, L. A., & Zhang, Q. (2022). Alzheimer's Disease: Epidemiology and Clinical Progression. *Neurology and therapy*, 11(2), 553–569. <https://doi.org/10.1007/s40120-022-00338-8>

52. Tanvir, E. M., Hossen, M. S., Hossain, M. F., Afroz, R., Gan, S. H., Khalil, M. I., & Karim, N. (2017). Antioxidant properties of popular turmeric (*Curcuma longa*) varieties from Bangladesh. *Journal of Food Quality*, 2017. <https://doi.org/10.1155/2017/8471785>

53. Tauffenberger, A., & Magistretti, P. J. (2021). Reactive Oxygen Species: Beyond Their Reactive Behavior. *Neurochemical research*, 46(1), 77–87. <https://doi.org/10.1007/s11064-020-03208-7>

54. Verma, M., Pandey, J., Joshi, S., & Mitra, A. (2021). Turmeric production, composition and its non-conventional uses: A review. *The Pharma Innovation Journal*, 10(12), 2757–2762. Retrieved from <http://www.thepharmajournal.com>

55. Xia Guo, Wenfeng Li, Heping Wang, Yan-Ying Fan, Huifang Wang, Xianghua Gao, Baolong Niu, Xuechen Gong, Preparation, characterization, release and antioxidant activity of curcumin-loaded amorphous calcium phosphate nanoparticles, journal of Non-Crystalline Solids, Volume 500, 2018, Pages 317-325, ISSN 0022-3093, <https://doi.org/10.1016/j.jnoncrysol.2018.08.015>.

Citation

Tukur Zayyanu Karnawat Monika, Fatima Aliyu, Fatima Aliyu. Nanocurcumin Encapsulation Enhances Alzheimer's Gene Expression in Neuroblastoma Cells Treated with Chemical Inducers. 2024, *Canadian Journal of Discovery*, 5(10), 1-13, doi: <https://doi.org/10.5281/zenodo.14013684>

Publication License

This work is licensed under a Creative Commons Attribution 4.0 International License.

General Note: Article is recommended to print as color digital version in recycled paper.

© 2024 Saint Lawrence River Publisher, Canada. <https://cjd.twasp.info/>